78 research outputs found

    Improved training of generative models

    Get PDF
    Cette thèse explore deux idées différentes: — Une méthode améliorée d’entraînement de réseaux de neurones récurrents. Communément, l’entraînement des réseaux de neurones récurrents se fait à l’aide d’une méthode connue sous le nom de ‘teacher forcing’. Cette méthode consiste à utiliser les valeurs de la séquence observée en tant qu’entrées du réseau pendant la phase d’entraînement, alors que l’on utilise la séquence des valeurs prédites par le modèle lors de la phase de génération. Nous présentons ici un algorithme appelé ‘professor forcing’ qui utilise l’adaptation de domaine adversaire pour encourager la dynamique du réseau récurrent à être la même lors de la phase d’entraînement et lors de la phase de génération. Ce travail a été accepté a la session de posters de la conférence NIPS 2016. — Un nouveau modèle pour l’entraînement de modèles génératifs. Un obstacle connu lors de l’entraînement de modèles graphiques non orientés avec variables latentes, tels que les machines de Boltzmann, est que la procédure d’entraînement par maximum de vraisemblance nécessite une chaîne de Markov pour échantillonner. Or le temps de mixage de la chaîne de Markov dans la boucle interne de l’entraînement peut être très long. Dans cette thèse, nous proposons d’abord l’idée qu’il suffit de découper localement la fonction d´énergie de sorte que son gradient pointe dans la bonne direction (c'est-à-dire vers la génération des données). Cela correspond à une nouvelle procédure d’apprentissage qui s’éloigne d’abord des données en suivant l’opérateur de transition du modèle, et qui ensuite entraîne cet opérateur à revenir en arrière à chaque étape, en revenant vers les données. Ce travail a été accepté en tant que poster à la conférence NIPS 2017. Dans le premier chapitre, je présente quelques notions élémentaires sur les modèles génératifs (en particulier les modèles graphiques orientés et non orientés). Je montre en quoi la méthode proposée dans le chapitre 3 est liée à ces modèles. Dans le deuxième chapitre, je décris notre méthode proposée (appelée ‘professor forcing’) pour améliorer l’entraînement des réseaux de neurones récurrents. Dans le troisième chapitre, je décris notre méthode proposée pour entraîner un modèle génératif en paramétrant directement un opérateur de transition.This thesis explores ideas along 2 different directions: — Improved Training of Recurrent Neural Networks - Recurrent Neural Networks are trained using teacher forcing which works by supplying observed sequence values as inputs during training, and using the network’s own one-step ahead predictions to do multi-step sampling. We introduce the Professor Forcing algorithm, which uses adversarial domain adaptation to encourage the dynamics of the recurrent network to be the same when training the network and when sampling from the network over multiple time steps. This work was accepted as a conference poster at NIPS 2016. — Training iterative generative models A recognized obstacle to training undirected graphical models with latent variables such as Boltzmann machines is that the maximum likelihood training procedure requires sampling from Monte-Carlo Markov chains which may not mix well, in the inner loop of training, for each example. In this thesis, we first propose the idea that it is sufficient to locally carve the energy function everywhere so that its gradient points in the right direction (i.e., towards generating the data). This corresponds to a new learning procedure that first walks away from data points by following the model transition operator and then trains that operator to walk backwards for each of these steps, back towards the training example. This work was accepted as a conference poster at NIPS 2017. Chapter One is dedicated to background knowledge about generative models. This covers directed and undirectored graphical models and how the proposed method in Chapter 3 are related to these. In the following chapter, I will describe our proposed method to improve training of recurrent neural networks using Professor Forcing Goyal et al. [2016]. The third chapter describes the Variational Walkback [Goyal et al., 2017a] algorithm. This is an algorithm for training an iterative generative model by directly learns a parameterized transition operator

    From specialists to generalists : inductive biases of deep learning for higher level cognition

    Full text link
    Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles. Avec suffisamment de données et de calculs, les réseaux de neurones actuels peuvent obtenir des résultats de niveau humain sur presque toutes les tâches. En ce sens, nous avons pu former des spécialistes capables d'effectuer très bien une tâche particulière, que ce soit le jeu de Go, jouer à des jeux Atari, manipuler le cube Rubik, mettre des légendes sur des images ou dessiner des images avec des légendes. Le prochain défi pour l'IA est de concevoir des méthodes pour former des généralistes qui, lorsqu'ils sont exposés à plusieurs tâches pendant l'entraînement, peuvent s'adapter rapidement à de nouvelles tâches inconnues. Sans aucune hypothèse sur la distribution génératrice de données, il peut ne pas être possible d'obtenir une meilleure généralisation et une meilleure adaptation à de nouvelles tâches (inconnues). Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles. Une possibilité fascinante est que l'intelligence humaine et animale puisse être expliquée par quelques principes, plutôt qu'une encyclopédie de faits. Si tel était le cas, nous pourrions plus facilement à la fois comprendre notre propre intelligence et construire des machines intelligentes. Tout comme en physique, les principes eux-mêmes ne suffiraient pas à prédire le comportement de systèmes complexes comme le cerveau, et des calculs importants pourraient être nécessaires pour simuler l'intelligence humaine. De plus, nous savons que les vrais cerveaux intègrent des connaissances a priori détaillées spécifiques à une tâche qui ne pourraient pas tenir dans une courte liste de principes simples. Nous pensons donc que cette courte liste explique plutôt la capacité des cerveaux à apprendre et à s'adapter efficacement à de nouveaux environnements, ce qui est une grande partie de ce dont nous avons besoin pour l'IA. Si cette hypothèse de simplicité des principes était correcte, cela suggérerait que l'étude du type de biais inductifs (une autre façon de penser aux principes de conception et aux a priori, dans le cas des systèmes d'apprentissage) que les humains et les animaux exploitent pourrait aider à la fois à clarifier ces principes et à fournir source d'inspiration pour la recherche en IA. L'apprentissage en profondeur exploite déjà plusieurs biais inductifs clés, et mon travail envisage une liste plus large, en se concentrant sur ceux qui concernent principalement le traitement cognitif de niveau supérieur. Mon travail se concentre sur la conception de tels modèles en y incorporant des hypothèses fortes mais générales (biais inductifs) qui permettent un raisonnement de haut niveau sur la structure du monde. Ce programme de recherche est à la fois ambitieux et pratique, produisant des algorithmes concrets ainsi qu'une vision cohérente pour une recherche à long terme vers la généralisation dans un monde complexe et changeant.Current neural networks achieve state-of-the-art results across a range of challenging problem domains. Given enough data, and computation, current neural networks can achieve human-level results on mostly any task. In the sense, that we have been able to train \textit{specialists} that can perform a particular task really well whether it's the game of GO, playing Atari games, Rubik's cube manipulation, image caption or drawing images given captions. The next challenge for AI is to devise methods to train \textit{generalists} that when exposed to multiple tasks during training can quickly adapt to new unknown tasks. Without any assumptions about the data generating distribution it may not be possible to achieve better generalization and adaption to new (unknown) tasks. A fascinating possibility is that human and animal intelligence could be explained by a few principles (rather than an encyclopedia). If that was the case, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human intelligence. In addition, we know that real brains incorporate some detailed task-specific a priori knowledge which could not fit in a short list of simple principles. So we think of that short list rather as explaining the ability of brains to learn and adapt efficiently to new environments, which is a great part of what we need for AI. If that simplicity of principles hypothesis was correct it would suggest that studying the kind of inductive biases (another way to think about principles of design and priors, in the case of learning systems) that humans and animals exploit could help both clarify these principles and provide inspiration for AI research. Deep learning already exploits several key inductive biases, and my work considers a larger list, focusing on those which concern mostly higher-level cognitive processing. My work focuses on designing such models by incorporating in them strong but general assumptions (inductive biases) that enable high-level reasoning about the structure of the world. This research program is both ambitious and practical, yielding concrete algorithms as well as a cohesive vision for long-term research towards generalization in a complex and changing world

    Inductive Biases for Deep Learning of Higher-Level Cognition

    Full text link
    A fascinating hypothesis is that human and animal intelligence could be explained by a few principles (rather than an encyclopedic list of heuristics). If that hypothesis was correct, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human-like intelligence. This hypothesis would suggest that studying the kind of inductive biases that humans and animals exploit could help both clarify these principles and provide inspiration for AI research and neuroscience theories. Deep learning already exploits several key inductive biases, and this work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing. The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities in terms of flexible out-of-distribution and systematic generalization, which is currently an area where a large gap exists between state-of-the-art machine learning and human intelligence.Comment: This document contains a review of authors research as part of the requirement of AG's predoctoral exam, an overview of the main contributions of the authors few recent papers (co-authored with several other co-authors) as well as a vision of proposed future researc

    Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net

    Full text link
    We propose a novel method to directly learn a stochastic transition operator whose repeated application provides generated samples. Traditional undirected graphical models approach this problem indirectly by learning a Markov chain model whose stationary distribution obeys detailed balance with respect to a parameterized energy function. The energy function is then modified so the model and data distributions match, with no guarantee on the number of steps required for the Markov chain to converge. Moreover, the detailed balance condition is highly restrictive: energy based models corresponding to neural networks must have symmetric weights, unlike biological neural circuits. In contrast, we develop a method for directly learning arbitrarily parameterized transition operators capable of expressing non-equilibrium stationary distributions that violate detailed balance, thereby enabling us to learn more biologically plausible asymmetric neural networks and more general non-energy based dynamical systems. The proposed training objective, which we derive via principled variational methods, encourages the transition operator to "walk back" in multi-step trajectories that start at data-points, as quickly as possible back to the original data points. We present a series of experimental results illustrating the soundness of the proposed approach, Variational Walkback (VW), on the MNIST, CIFAR-10, SVHN and CelebA datasets, demonstrating superior samples compared to earlier attempts to learn a transition operator. We also show that although each rapid training trajectory is limited to a finite but variable number of steps, our transition operator continues to generate good samples well past the length of such trajectories, thereby demonstrating the match of its non-equilibrium stationary distribution to the data distribution. Source Code: http://github.com/anirudh9119/walkback_nips17Comment: To appear at NIPS 201
    • …
    corecore